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ABSTRACT 

W e  deve lop  a computat ional  method f o r  t h e  e s t i m a t i o n  of parameters  i n  a 
d i s t r i b u t e d  model f o r  a f l e x i b l e  s t r u c t u r e .  The s t r u c t u r e  w e  c o n s i d e r  ( p a r t  
of t h e  "RPL experiment") c o n s i s t s  of a c a n t i l e v e r e d  beam wi th  a t h r u s t e r  and 
l i n e a r  acce lerometer  a t  t h e  f r e e  end .  The  t h r u s t e r  i s  f e d  by a p r e s s u r i z e d  
hose whose h o r i z o n t a l  motion e f f e c t s  t h e  t r ansve r se  v i b r a t i o n  of t h e  beam. W e  
use  t h e  Euler -Bernoul l i  t heo ry  t o  model t h e  v i b r a t i o n  of t h e  beam and t r e a t  
t h e  hose - th rus t e r  assembly a s  a lumped o r  p o i n t  mass-dashpot-spring system a t  
t h e  t i p .  Using measurements of l i n e a r  a c c e l e r a t i o n  a t  t h e  t i p ,  w e  e s t i m a t e  
t h e  hose parameters  (mass, s t i f f n e s s ,  damping) and a Voigt-Kelvin v i s c o e l a s t i c  
s t r u c t u r a l  damping parameter  f o r  t h e  beam us ing  a l e a s t  squa res  f i t  t o  t h e  
d a t a .  

W e  cons ide r  s p l i n e  based approximations t o  t h e  hybr id  (coupled o rd ina ry  
and p a r t i a l  d i f f e r e n t i a l  equa t ions )  system: t h e o r e t i c a l  convergence r e s u l t s  
and numerical  s t u d i e s  wi th  both  s imula t ion  and a c t u a l  exper imenta l  d a t a  
ob ta ined  from t h e  s t r u c t u r e  a r e  p re sen ted  and d i scussed .  

This  r e sea rch  was suppor ted  i n  p a r t  by t h e  Nat iona l  Science Foundation 
under NSF Grant MCS-8504316, t h e  A i r  Force Of f i ce  of S c i e n t i f i c  Research under 
Con t rac t  AFOSR-84-0398, and t h e  Nat iona l  Aeronaut ics  and Space Adminis t ra t ion  
under NASA Grant NAG-1-517. 

This  r e sea rch  was suppor ted  i n  p a r t  by t h e  A i r  Force O f f i c e  of S c i e n t i f i c  
Research under Cont rac t  AFOSR-84-0393. 

P a r t  of t h i s  r e sea rch  was c a r r i e d  out while  t h e s e  au tho r s  w e r e  v i s i t i n g  
s c i e n t i s t s  a t  t h e  I n s t i t u t e  f o r  Computer  Appl ica t ions  i n  Science and Engineer- 
i n g  ( I C A S E )  , NASA Langley Research Center, Hampton, VA, which i s  ope ra t ed  
under  NASA Con t rac t s  NAS1-17070 and NAS1-18107. 



1 

1. Introductim 

The difficulties involved in the design of practical and effi- 

cient control laws for large flexible spacecraft (e.g. the inherent 

infinite dimensionality of the system, a large number of closely 

spaced modal frequencies, high flexibility, light damping, a fuel- 

limited, hostile, highly variable environment, etc.) have stimulated 

research into the development of system identification and parameter 

estimation procedures which will yield high fidelity models. A partic- 

ular area of interest involves schemes for the estimation of material 

parameters describing, for example, mass, inertia, stiffness or 

damping properties in distributed models for the vibration of 

viscoelastic systems-specifically, mechanical beams, plates and the 

like. In addition, since the resulting inverse problems are often 

infinite dimensional, substantial attention has been focused on 

approximation; see, for example, [ll, [21, [ 3 3 ,  [41, [81  and [121. 

In these treatments, the parameter estimation problem is formulated as 

a least 

velocity. Although significant gains have been made in the development 

of instrumentation to measure displacement and velocity (e.$. laser 

technology, etc.), one of the least expensive, most reliable and most 

commonly used sensors is the linear accelerometer. 

it is possible to integrate acceleration measurements once or twice 

to obtain respectively velocity or displacement data, in practice this 

task can pose significant challenges. For example, integration of the 

signal could result in the amplification of low frequency measurement 

noise or dynamic effects which have not been included in the underly- 

ing model. In light of this, we have undertaken to show here, both 

squares fit to measurements of either displacement or 

While in principle 
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theoretically and computationally, that a scheme in the spirit of 

those developed in the previously cited references can also be 

effectively used with acceleration measurements. In particular we 

note, this involves the nontrivial extension of the familiar 

variational arguments which are used to demonstrate the convergence of 

the finite element state approximations upon which the identification 

schemes are based. Indeed, it must be shown that in addition to the 

convergence of the displacement and velocity, the convergence of 

acceleration can be obtained as well. 

The other primary motivation for the present effort is that while 

these methods have been extensively tested and evaluated with simula- 

tion data, they have never been tried with actual experimental data. 

We have tested our scheme with data obtained from an experimental 

structure which was designed and constructed at the Charles Stark 

Draper Laboratory in Cambridge, Massachusetts with funding provided by 

the United States Air Force Rocket Propulsion Laboratory (RPL). The 

RPL structure (as it will henceforth be referred to as) was designed 

to serve as a test bed for the implementation and evaluation of 

control algorithms for large angle slewing of spacecraft with flexible 

appendages. The structure was specifically designed to exhibit 

structural modes and damping characteristics representative of 

realistic large flexible space structures. 

In Section 2 we describe the RPL structure (its geometry, 

instrumentation, etc.) and formulate an inverse problem involving a 

distributed system. In Section 3, we use the resulting infinite 

dimensional estimation problem to motivate the development of a finite 

dimensional, finite element based approximation scheme. We also 
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function f from R into X will be said to belong to L, ( Iz ;X)  if 
k 

discuss our theoretical convergence results. In Section 4 we present 

numerical findings. 

We use standard notation throughout. For X a normed linear 
I space, L(X) denotes the space of bounded linear operators from X into 

X. For R an interval and k = 0,1,2,.-., C (R;X) denotes the space of 

functions from R into X which are k times continuously strongly 

differentiable on R. 

k 

When k = 0 we shall simply write C(R;X). A 

I of Ck(R;X) with respect to the norm 

If, in addition, X is a Hilbert space with inner product < s , - > ~  then 

H (R;X)is a Hilbert space with inner product k 
I 

I k k When X = R, we use the abbreviated notations C ( a ) ,  L,(R) and H (a). 

Note that Ho(R) = L,(R) and is the standard inner product on 

L, (a ) .  
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2. The Identification Problem 

The RPL structure (see Figure 2.1 below) consists of four 

flexible appendages which are cantilevered at right angles to one 

another from a rigid central hub. The hub is mounted on an air 

bearing table thus permitting the near frictionless rotation of the 

structure about the vertical axis. 

Figure 2.1 

Two of the appendages (which are mounted to the hub 180" apart) are 

"active"; each has two nitrogen cold gas thrusters mounted in opposing 

directions at its tip. The remaining two appendages are "passive" 

with only counter-balancing masses affixed to their free ends. The 

presence of the tip masses on the passive arms serves to preserve the 
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overall symmetry of the structure. 

the central hub is supplied to the thrusters via two stainless steel 

Nitrogen gas from tanks mounted on 

I mesh-wrapped high pressure hoses. The expulsion of propellant from 

the thruster nozzles is controlled by electro-mechanical or solenoidal 

valves. Each of the four appendages is equipped with a sensor in the 

1 form of a linear accelerometer attached at its tip. 

accelerometers is processed and recorded and control input signals to 

~ the thrusters are generated by a MINC 11/23 microcomputer. A detailed 

Data from the 

description of the structure's design specifications can be found in 

[SI and 1153. 

The problem which is of primary concern to us here involves the 

modeling of the effects of the nitrogen supply hoses on the transverse 

vibration of the active members. We consider therefore, the structure 

with the central hub immobilized and look  only at the vibration of one 

of the active appendages and view it as a simple cantilevered beam 

(see Figure 2.2). 

Figure 2.2 
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We treat the thruster assembly as a point mass that is rigidly attach- 

ed to the beam at the tip and propose a model for the hose effects in 

the form of a proof mass which reacts against the tip mass. In 

effect, we consider the idealized, simplified structure depicted in 

Figure 2.3 below involving a single, cantilevered, flexible, uniform 

beam with a two-mass-dashpot-spring system affixed to its free end. 

3 2 

L 
" 7 -  

Figure 2.3 

In formulating a mathematical model for the structure shown in 

Figure 2.3 above, we assume that the beam is of length R with uniform 

rectangular cross section of height h and width b. We let u(t,x> and 

y(t) denote respectively the transverse displacement of the beam at 

position x along its span and the displacement of the proof or hose 

mass, each at time t. Both are measured relative to the x-axis in the 

coordinate frame determined by the longitudinal axis of the beam in 



its undeformed state with origin located at the beam's root or fixed 

end. 

Iu(t ,x) I < < R and I HPQF--(t ,x) I < < 1) and has a small height to span 

length ratio, the Euler-Bernoulli theory (see [SI) including Voigt- 

Kelvin viscoelastic structural damping (see 1101) yields the partial 

differential equation 

Assuming the beam undergoes only small deformations (i.e. 

au 
ax 

p -(t,X) 8.U + CDI --(t,x) a4 au + E1 -(t,X) a4u = 0, (2.1) 
atz ax4 at ax 4 

where p is the linear mass density of the beam, E is the modulus of 

elasticity, cD is the coefficient of viscosity and I is the second 

moment or moment of inertia of the cross sectional area A about the 

neutral axis. For the beam we consider here with constant rectangular 

cross section, I = bh 3 /12. Since the beam is assumed to be uniform, 

the parameters p ,  E and cD are taken to be constant in time and space. 

Balancing forces at the free end, elementary Newtonian mechanics 

yields the equations of motion 

and 
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for the tip and hose masses mT and mH respectively. 

hose stiffness, cH is the hose damping coefficient and f(t) is the 

externally applied force at time t due to the firing of the thrusters 

mounted at the tip. 

Here kH is the 

Making the assumption that the rotatory inertia of the proof mass 

system is negligible, rotational equilibrium at the tip can be 

expressed as 

a 2  au a2u 
(2 .4 )  C,I --(t,!L) + E1 -(t,L) = 0, t > 0. 

The zero displacement and zero slope constraints at the fixed end are 

given by 

au 
ax 

(2.5) u(t,O) = 0 and -(t,O> = 0, t ’ O  

respectively. 

the initial conditions 

Taking the structure to be initially at rest we have 

au 
at 

(2.6) u(0,x) = 0 and -(o,x) = 0, 

and 

(2.71 y m  = 0 dY and -(O) = 0. 
dt 

O S x S R  

In the mathematical model given by (2.1) - (2.7) above the parameters 

p ,  mT and I can be measured or computed directly. 

elasticity E is typically determined in the laboratory. For the most 

commonly used materials (including aluminum which is the material from 

The modulus of 
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which the structure of interest to us here is made) its value can be 

readily looked up in standard engineering tables. 

mH, cH and kH on the other hand, must be determined experimentally; 

that is, they will have to be identified based upon the observed 

response of the structure to a given input disturbance. This is one 

class of inverse problems which we formulate and consider below. In 

the system of equations (2.1) - (2.7) we explicitly modeled (albeit, 

in a rather simple fashion) the dynamical effects of the hose. 

unknown hose parameters are then determined as the solution to an 

inverse problem. 

The parameters cD, 

The 

An alternative approach to obtaining a model which exhibits a 

reasonable degree of fidelity involves a technique which is sometimes 

referred to as model adjustment. 

parameters are then "adjusted" so as t o  compensate for unmodeled 

dynamics. 

variations may or may not be motivated by physical considerations. 

Starting with a simple model, the 

The choice of parameters to be adjusted and the resulting 

In our problem for example, we might consider a simple cantile- 

vered beam with tip mass (i.e. mH = cH = kH = 0) and then adjust the 

theoretical or measured values of E and mT to compensate for the 

dynamical effects which result from the hose mass and motion. A value 

for the parameter cD could also be identified if damping effects are 

considered significant. Model adjustment was used in [SI to obtain a 

model for the RPL structure upon which control design could be based. 

We define an inverse problem which encompasses both of the 

general approaches which have been outlined above. We assume that an 

input disturbance described by the function f(t), t E [O,T1 is applied 

to the structure via the tip thrusters and that the linear accelera- 
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tion at the free end of the beam, z(t), is measured and recorded for 

each t E [t,,t,I where 0 S to S t, S T. (Of course, in actual 

practice, z could in fact only be sampled discretely). Let R, denote 

the positive real numbers and let Q be a closed and bounded subset of 

RY. We seek a 6 E Q which minimizes 

where u(.,*;q) denotes the solution to the initial-boundary value 

problem (2.1) - (2.7) corresponding to q = (mT,E,cD,mH,CH,kH) E Q. 

Our primary concerns in the next section will include well- 

posedness of the system (2.1) - (2.71, existence of a minimizer for J ,  

and development of approximation techniques to find this minimizer. 
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models for flexible structures (see, for example, [11, [21, [31, [41, 
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where the symbol D is used here and below to denote the spatial 

differentiation operator -. The space V together with the inner 

product < e , .  > v  form a Hilbert space which is densely and compactly 
embedded in H. 

d 
dx 

We rewrite the system (2.1) - (2.7) as the abstract second order 

initial value problem in H 

t ’ O  

t > O  

A 

in the states u(t) 5 (y(t),u(t,a),u(t,.)). The operators M E L(H), 

C:D C H + H and K:D C H + H are given by 

- E1 D3@(R),EI D4@) 

For each t > 0, F(t) = 

(O,f(t),O) E H, 6 :  D C H + R is given by 6((<,~,@)) = D*@(R) and e = 

cD/E. 

The restrictions e and of the operators C and K that appear in 

equation (3.1) above to N(6), the null space of the operator 6 ,  have 
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natural extensions to bounded operators from V (which is the V-closure 

of N(6)) into V’, the dual of V. The extensions are defined in terms 

of the bilinear forms e(.,.>: V x V + R and k(*,.): V x V + R given by 

A 

for 0 = ( < , @ ( f - > , @ >  E V and = (1,9(f-) ,q) E V. 

The finite element method we develop below could be derived from 

standard energy considerations. 

take, it is worth noting that the usual energy expressions can be 

given in terms of the forms, operators and inner products defined 

above. 

While this is not the approach we 

1 

The kinetic energy is given by I 

the potential or strain energy by 

and the Rayleigh dissipation function by 

Written in its weak, variational or distributional form 

A 

t > 0 ,  @ E V  
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the initial value problem (3.1) - (3.2) in H becomes an initial value 

problem in V I .  If we assume that f E L,(O,T) and rewrite (3.71, (3.8) 

as an equivalent first order vector system, the theory of abstract 

parabolic systems (see 193, [141) yields the existence of a unique 

mapping 

which satisfies (3.7), (3.8). If we are willing to assume further 

that f is Hb'lder continuous then there exists a 

A L. 

with u(t> t sut(t> E D, t > 0 which uniquely satisfies the initial 

value problem (3.1) - (3.3). 

In order to demonstrate the convergence of the approximation 

schemes we develop below, we shall require a somewhat more regular 

solution to the initial value problem (3.71, (3.8) than either of the 

conditions on f stated above can guarantee. In addition to (3.9), we 

shall require that u E HZ((O,T);V). This can be guaranteed (see [VI) 

if we assume that f E H1(-'c,T) for some 'c > 0 with f(t) = 0, t < 0 and 

we modify our original mathematical model so that 

A 

(3.10) F(t) = f(t);, t E [-T,TI 

A A 

for some 8 = (0,8(R),8), a fixed element in V. We note that with 8 
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chosen appropriately in V, F given by (3.10) may in fact represent an 

improved model of reality when compared with our present choice of F 

where 6 = (0,1,0) E H. 
A 

I Central to our approach is a cubic spline based Galerkin approxi- 

mation to the initial value problem (3.7), (3.8). For each N =1,2,... 

let A denote the uniform mesh (0, -, -, e - .  , R) on LO,%] and let 
N R 2% 

N N  

I N N 2 nodal set A (see [111, [la]). Briefly, each B is a C function on 

LO,%] which is a cubic polynomial on each subinterval [(k-l)-,k-l, 

3 
R R  
N N  

denote the usual cubic B-splines defined with respect to the 
I 

N R  N R  N R N R N 
3 N  3 N  3 N J N R 

1 B (j-) = 4, DB (3-1 = 0, B ((j*l)-) = 1, and DB.((j+l)-) = T -. 

Defining { B  I by B1 - B -2B -2B and B = B , j=2,3,--.,N+l, 

we have B (0) = DB (0) = 0, j = 1,2,...,N+1 . With B = (1,0,0) and 

AN N N N+l 
B = (o,B &>,eN>, j = 1,2,-,N+i, v = span I is an N+2 

N N+l N N N N N N 
3 3-1 0 1 -1 3 3 

3 3 0 

3 3 3 3 j-0 

A N N 

dimensional subspace of V. 
N The Galerkin equations in V corresponding to (3.71, (3.8) for 

^N N 
u (t) E V are given by 

AN AN 
t 

(3.12) u (0) = 0 u (0) = 0. 
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Setting 

nN N+1 N ,N 
t 2 0, 

N 
the initial value problem (3.11), (3.12) in V is equivalent to the 

linear, nonhomogeneous, second order N+2 - vector system 

N N  N MN- (t) + CN-(t) + K w (t) = F (t), 
dzwN dwN 
dt dt 

(3.13) t ’ O  

N 
(3.14) w (0) = 0 

N dw 
dt -(O) = 0 

N N N N T where w (t> = (w (t),wl(t),...,w 

x (N+2) matrices M , C 

(t)) . The entries in the (N+2) 
0 N+1 
N N  N 

and K are given by 

N nN nN 

and 
N nN nN 

i,j = 0,1,2,.-.,N+l respectively. For each t > 0 the components in 
N N nN N 

i i H  i 
the N+2 - vector F (t) are given by F (t) = <F(t),B > = f(t)B (E) 

or, recalling (3.101, by 
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N N N 

i = 0,1,2,*.*,N+1. 

We consider the sequence of approximating finite dimensional iden- 

tification problems which consist of finding GN E Q which minimizes 

^N N N where for each q E Q, u (t;q) = (yN(t;q),u (t,R;q),u (t,.;q>) is the 

unique solution to the initial value problem (3.11), (3.12) in VN 

corresponding to q = (mT,E,cD,mH,cH,kH) E Q. 

a given q E Q, JN(q) is computed as 

In actual practice, for 

N N N T 
where w (-;q) = (w (*;q),...,w (-;q)) is the unique solution to the 

0 N+l 
N+2 - vector system (3.13), (3.14) corresponding to q E Q. 

With finite dimensional state constraints, the solution of the 

Nth estimation problem above is, at least in grbdJd&, routine. For 

inverse problems which are closely related to the one we treat here, 

our earlier numerical studies have shown that satisfactory results can 

be obtained using any one of a number of standard computational 

techniques for least squares minimization (for example, Newton's 

method, conjugate gradient, steepest descent, Levenberg-Marquardt, 

etc., see [21). 
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Our fundamental theoretical result is that each of the approxi- 

mating identification problems and the original problem have 

solutions. 

problems, in some sense, approximate solutions to the original 

problem. 

Moreover, we show that the solutions to the approximating 

We require the following lemma. 

Lema 3 . L  

denote the unique solution to the initial value problem (3.111, 
0 corresponding to gN and let u(. ;q ) denote the unique solution to the 

Suppose {q"} C Q with qN + q 0 as N + 0 0 .  Let U"(.;q N 

(3.12) 
A 

initial value problem (3.71, (3.8) corresponding to q 0 . If u(.;qo) E 

HZ((O,T);V) then 

as N + 0 0 .  

Proof 

For each N = 1,2,... let PN denote the orthogonal projection of H 

onto VN defined with respect to the standard inner product on H, 

Using the approximation theoretic properties of interpolatory 

splines, it is not difficult to show that (see [31) 
<""€I. 

A N 
(3.18) lim I ( P  - I)@lv = 0 

N+w 
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A 

for each @ E V. 

For q - (mT,E,cD,mH,cH,kH) E Q it is immediately clear that M, 

I c(.,.) and k(*,-), the operator and forms defined in (3.4), (3.5) and 
I 

0 0 0 0 0 0  
T D H H H  

I 
(3.6) respectively depend upon q. For q = (m ,E ,c ,m ,c ,k ) E Q 

and qN = (m ,E ,c ,m ,c ,k ) E Q we adopt the shorthand notation N N N N N N  
T D H H H  

c N ( e , . )  = c(qN)(.,-) and kN(.,*) = k ( q N ) ( - , * ) .  Similarly, we denote 
0 "N N "0 A 

u(. ;q and u ( ;q ) by u and iN respectively. 
From (3.17), the assumption that io E H*((O,T);V) and the 

inequality 

it is clear that we need only to consider the first term on the right 

hand side of the above estimate. 
Letting GN(t) - iN(t) - P NAO u (t) for t 2 0, (3.71, (3.81, (3.111, 

(3.12) and VN C V imply 

= <M N (I-PN)L:t,GN>H + <(M 0 - M N )utt,@ "0 "N >H 

N "0 "N 0 "0 "N N "0 "N + &I-P )ut,@ 1 + c (ut,$ 1 - c (ut*@ 

N "0 "N 0 "0 "N N "0 "N + kN((I-P )u , @  ) + k (u ,@ - k (u , @  1, t > 0, iN E VN 
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N "N "N N "N "N - -  k (v ,vt> + k (vt,vt), 
dt 

Integrating the above expression from 0 

find 

1 N "N "N 
2 > ds + - c (v,,v,> (3.21) 

t > 0. 

to t and recalling (3.201, we 

t N  N "0 "N 0 N "0 "N > 
vss e Io { < M  (I-P )uss,vss> - <(M -M )uss, 

H 

- c N ((1-p N )uss,vs) "0 "N - (c 0 (uss,vs) "0 "N - c N (uss,vs>> "0 "N 

N N "0 "N - k ((I-P >us,vs> - 

+ k N Cvs,vs))ds "N "N 

+ CN((I-P N >ut,vt> "0 "N + 
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N N "0 "N 0 ^O "N N "0 "N N "N "N + k ((I-P >U ,Vt) + (k (U ,Vt> - k (U ,Vt>> - k (V ,Vt>. 

We recall that Q has been assumed to be a closed and bounded subset of 
R+ 6 and observe therefore that the forms c 0 ( e , . ) ,  c N ( a , . ) ,  k 0 ( . , e >  and 

repeated application of the inequality 

<a,b> ;5 la 

in (3.21) yield the 

"N 

4 Yo{  

+ -  4 

kN( e ,  a >  are uniformly bounded. These two facts together with the 

A 

estimate 

1"N l 2  
+ a vss H 

2 

H V 

"N12 

N "0 is 
+ p1-p )uss 

vs v 
2 N O 2  N O 2  2 2 

+ N IuS l  "0 
+ lvSIV + ( I k H -k H I + IE -E I )1;,"1 + l;:lv V V 

2 "N 2 

V 
+ IVslv)dS "N + - I ( I - P ~ > G ; I  + alvtIV 4a 

"N 2 N O 2  2 
+ I E  -E I >IuoI + alvtlV 

V 
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where yo is a positive constant. 

we find 

Choosing a > 0 sufficiently small, 

where 

2 2 
+ ((I-P )ut(t)l 

V V 
N "0 a,(t) - Y2{I(I-P N >u "0 (til 

and yi, i = 1,2,3 are positive constants which do not depend on N. 

I N Choosing iN = G:(t) E V in (3.19), arguments similar to those 

used above (see [21, [31) yield 

(3.23) lim IjN(t)I = o 
2 

N+CO V 

for each t E [O,T]. 

of the Gronwall inequality to (3.22) we obtain the desired result. 

Using io E H*((O,T);V), (3.18) and an application 

We note that we also obtain 
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0 for each t E [O,TI. From (3.23) and (3.24) we find IiN(t;qN)-u(t;q ) I  A 

v 
+ 0 and lut(t;q ^N N A  )-ut(t;q 0 ) I  + 0 as N + w for each t E [O,T]. 

We remark that it is the L, convergence (more precisely, H 

convergence) in (3.16) which necessitates, at least in theory, that we 

be provided with distributed time observations (i.e. observations 

which are continuous in time). 

that for fits based upon displacement, velocity or slope, time-sampled 

measurements are sufficient. 

optimization problems are solved, the integral least squares 

performance indices (3.15) are discretized. Consequently, in 

practice, only discrete measurements of linear acceleration at the tip 

are required. 

It is clear from (3.23) and (3.24) 

Of course when the approximating 

2 2 ~ 3 ~  

solution GN. 

Each of the approximating identification problems has a 

The sequence isN} C Q admits a convergent subsequence 
N A 3 N 

1 with j + E Q as j + 0 0 .  If for each q E Q, u(.;q), the unique 

solution to the initial value problem (3.7), (3.8) corresponding to q, 

is an element in Hz((O,T);V) then 

identification problem. In addition, the limit point of any convergent 

subsequence of {eN) is a solution to the original identification 
problem as well. 

is a solution to the original 

Proof 

differential equations, the fact that Q has been assumed to be a 

Standard continuous dependence results for linear ordinary 
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6 closed and bounded subset of R and the form of JN are sufficient to 

conclude that a solution cN E Q to the Nth approximating identifica- 
tion problem exists. Once again since Q is a closed and bounded (and 

therefore compact) subset of R6, the sequence {eN) c Q admits a 
N N 

convergent subsequence. If {e  j) C {i ) with :j + 6 E Q as j + w and 

q is any point in Q, then two applications of Lemma 3.1 (the second 

one with the constant sequence (9)) yield 

and the theorem is proved. 

Although Theorem 3.1 above guarantees only subsequential 

convergence, in all test and simulation examples we have considered, 

we in fact observe the convergence of the sequence {eN) itself to the 
optimal parameters e.  
only minor modification (see [21) the approximation scheme reported on 

here (together with the convergence theory outlined in the lemma and 

theorem above) could be applied to inverse problems involving the 

estmation of spatially varying parameters (such as linear mass density 

p ,  flexural stiffness EI, or damping coefficient cDI) which appear in 

the equations (2 .1 )  - (2 .4 ) .  We note of course that when either E1 or 

CDI are spatially varying, the Euler-Bernoulli equation and 

corresponding boundary conditions are of a slightly different form 

than those given in (2.1) - (2 .4 )  (see [ a ] ) .  

Also, it is not difficult to verify that with 
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4. - 
We used our scheme to attempt to solve the inverse problem which 

was posed above with data obtained from an experiment on the RPL 

structure. We report on our findings and observations here. 

A l l  computer codes were written in Fortran and run on the IBM 

3081 at the University of Southern California. 

finite dimensional least-squares minimization problems were solved 

using the IMSL implementation of the Levenberg-Marquardt algorithm 

(routine ZXSSQ), an iterative Newton's method-steepest descent hybrid 

(see121). 

The approximating 

The second order N+2 - vector systems (3.131, (3.14) were 
solved (integrated) in each iteration (for the evaluation of J N and 

its gradient) using Gear's method for stiff systems (IMSL routine 

DGEAR). 

by a discrete sum over a uniform mesh on [t,,t,l. 

The integral least squares performance index was approximated 

The integral inner 
products in the definitions of the matrices MN, CN and K N were 

computed using a composite two point Gauss-Legendre quadrature rule. 

The second time derivative of vN, or generalized acceleration, 

d2wN 
dt * 
generalized displacement, 

, was computed using a second order centered difference on the 

dt 

We found this to be a somewhat more stable method for computing 

acceleration (an unbounded measurement) than was a first order 

centered difference on the generalized velocity, 
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A N dwN A dw 
XT -(t + -) - -(t - -) 

d wA* dt 2 dt 2 
A (t) % dt 

Either of the time differencing formulas (4.1) or (4.2) proved 

significantly more stable than using the differential equation 

directly to compute 7 (t) via an inversion of M . As to why d2wN N 
dt 

to be 

(3.13) 

this 

was so,  we can only offer the conjecture that the time differencing 

provided, at least to a certain extent, some filtration of the signal. 

Before turning our attention to the experimental data, we tested 

our scheme with simulated data. "True" values for the unknown 

parameters cD (actually cDI), mH, cH and kH were chosen and a quintic 

spline-based semi-discrete Galerkin scheme applied to the initial 

value problem (3.71, (3.8) was used to generate data. 

Setting p = .03, mT = .15, E1 = 80.0, R = 4.0 and 

1.0 
0.0 

f(t) = 
0 S t 5 0.05 
0.05 < t S 5.0, 

the fit was carried out based upon observations of linear acceleration 

at the tip at times ti - .li, i = 2,3,...,50 . 
equivalent to taking to = .l, t, = 5.0 and using a standard rectangle 

rule with uniform mesh spacing .1 to discretize the integral appearing 

We note that this is 

in the definition of the least squares performance index J N . The 

initial estimates cDI = .0035, mH = .035, and kH = .4 were used to 

start the iterative optimization procedure. 

be .l. Our results are summarized in Table 4.1 below. 

In (4.1), A was taken t o  
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.298626 

.298875 

.299455 

.299787 

.300087 

i 

2. 57x10-1 

4 . 3 7 ~ 1 0 - ~  

5. 0 6 ~ 1 0 - ~  

7 . 6 6 ~ 1 0 - ~  

4. 6 3 ~ 1 0 - ~  

N 

True 
value 

Initial 
Estimate 

.037537 

.066997 

.005063 

.005667 

.005049 

.005000 

.003500 

.039471 

.039485 

.039777 

.039899 

.040035 

.040000 

.035000 

.003428 

.003907 

.003997 

.003971 

.004006 

.004000 

.003500 

.300000 I 

.400000 

~~ 

Table 4.1 

The experiment which we describe below was carried out for us on 

the RPL structure by Dr. Michel A .  Floyd, formerly of the Control and 

Flight Dynamics Division of the Charles Stark Draper Laboratory and 

the Department of Aeronautics and Astronautics, MIT. 

The air bearing table was clamped so that the central hub could 

not rotate. The thruster lines for one of the active appendages was 

Set to 300 psi and the thruster was fired for .05 seconds (50 milli- 

seconds). 

thruster was assumed to have begun at time t = 0. Linear acceleration 

at the tip was observed over the time interval 0 to 5 seconds. With a 

sampling period of .005 seconds (5 milliseconds) a total of 1000 

measurements were recorded. The data is plotted in Figure 4.1 below. 

The scale factor for the accelerometer is 5 volts/$ (g = 32 ft/sec2). 

With the appendage initially at rest, the firing of the 
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Figure 4.1 

The noticeably higher frequency ( %  14 Hz) component of the data 

is a torsional mode of the arm excited by the motion of the thruster 

valve mechanisms and inertial and elastic forces applied to the tip of 

, 
I 

, 
the arm by the nitrogen supply hose. The opening or closing of the 

solenoidal valve in the thruster generates an inertial force which i 
I 

acts as a torque on the tip of the arm. 

are excited. A l s o ,  in addition to modifying transverse bending 

characteristics, since the hose is attached to the top of the arm, its 

horizontal motion will tend to generate torques which have a 

"twisting" effect. 

Consequently, torsional modes 

Although the accelerometer is mounted at the 
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l 
I 

center of the arm (and therefore on a nodal line of the longitudinal 

torsional modes, if we assume vertical symmetry), as the arm twists, 

the accelerometer picks up a component of the earth's gravitational 

force. Since the first torsional mode has a much higher frequency 

than either of the first two flexible modes (.'75 Hz and 7.5 Hz, as 

identified from an FFT of the data) and since it is rapidly damped, we 

neglected its contribution to the accelerometer signal, treating it as 

white noise, and left it unmodeled. A detailed discussion of the 

causes of the excitation of the torsional modes and its effect on the 

transverse bending characteristics of the active appendages can be 

found in [SI. 

b 

The physical characteristics of the structure are as follows. 

The arm is made of aluminum and is 4 feet in length, 6 inches in width 

and .125 inches in height. From this we obtain R = 4.0 ft, p = .027 

slug/ft and I = 4.71 x 

for E is 15.84 x lo8 lb/(ft)2. 

determined to be mT = .149 slug. 

we find that a hose pressure of 300 psi is equivalent to a force of 

(ft)4. The theoretically predicted value 

The mass of the thruster assembly was 

From the calibration table in E61, 

I 
I 

, .297 lb. We set therefore 

and input f as specified above to generate the plot of linear 

acceleration at the tip given in Figure 4.2. 
1 

0.29'7 lb 0 S t 5 0.05 
0.0 0.05 < t S 5.0 

f(t) = 1 
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The plot was obtained by integrating the initial value problem (3.131, 

(3.14) with N = 4 and then using (4.1) to compute the acceleration at 

the free end. 

interval [0,51 are plotted in Figure 4.3. 

the residuals (at intervals of .1 seconds) was found to be 3.03. 

(t,L)) over the time The residuals (l(t,L) - - 

The sum of the squares of 

azu azUN 

at at 

x ‘ -Data  

0 Fit 

x 
x 

I I I I 
00 I . o o  2 . 6 6  3 , O f J  4 . 0 0  

Time (Seconds) 

Figure 4.2 

I 
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Figure 4.3  

Using the data on the interval 3.0 to 5 . 0  (where the contribution 

from the torsional modes has been significantly damped) with a 

sampling period of .1 seconds we used our scheme with N = 4 to obtain 

optimal estimates for the coefficient of viscosity cD and the hose 

parameters mH, cH and kH. 

the values of E and mT were held fixed at their theoretically 

predicted values. 

two observed natural frequencies of the data with the first two modal 

frequencies of the model was used to obtain a crude initial estimate 

In the set of runs we are about to describe 

A rough calculation based upon "matching" the first 
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.039269 

for the ratio kH/mH. 

parameters mH and kH only, we obtained the optimal values shown in 

Table 4.2 below. Integrating the system (3.13), (3.14) over the time 

interval [O,Sl with mH and kH set to the values in the table and cD = 

= 0 the sum of the squares of the residuals (at intervals of .1 

Then, using our scheme to minimize over the 

CH 
seconds) was found to be .73. 

.339935 

Table 4.2 

Next, holding mH and kH fixed at the values uriown in Table 4.2, a 

search on cH was carried out (the initial estimate for cH was taken to 

be zero and cD was held fixed at zero). Then using the resulting 

values of mH, cH and kH as initial estimates, a fit over all 

paramet ers was 

of the squares 

performed. The result is shown in Table 4.3. 

of the residuals was found to be .728. 

.043431 .004056 .351385 

three 

The sum 

Table 4.3 

Continuing to use the same procedure to generate "start up" values, we 
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cD(lb sec/ (f t 12) 

127.40 

eventually used our scheme to search over all four parameters cD, mH, 

and kH simultaneously obtaining the values given in Table 4 .4  and CH 
the fit plotted in Figure 4 .4 .  The residuals are plotted in Figure 

mH(slug) cH(lb - sec/f t ) kH( lb/f t ) 

.0801 .007804 .412977 

4 .5 .  The sum of their squares was computed to be .70. 

Table 4.4 

x 
X 

I I I I 
G O  i - 0 0  2 .oo 3 .00  1 .oo 

Time (Seconds) 

Figure 4 . 4  
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Figure 4 . 5  

In designing a controller for the RPL experiment, Floyd in [SI 

used model adjustment to tune a simple, undamped, cantilevered beam 

with tip mass model for the active arms (i.e. the arms with the hoses) 

of the structure. 

table was locked in a stationary position. 

ized, an impulsive force was applied to the beam and linear accelera- 

tion at the tip was measured and recorded. 

assumption that with the hose depressurized, the presence of the hose 

serves only to add mass to the tip of the arm, the parameter mT was 

He used the following procedure. The air bearing 

With the hose depressur- 

Based upon the physical 
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.254 

I 

17.31 x 10' 

adjusted so that the first mode or frequency of the model agreed with 

the first observed cantilever mode (obtained via an FFT) of the data. 

Then, with the hose pressurized, the same experimental procedure was 

carried out. This time however, the modulus of elasticity E of the 

beam was adjusted to compensate for the variation in stiffness which 

results from the presence of the hose. The adjusted values of the tip 

mass, mT, and modulus of elasticity, E, obtained by Floyd are given in 

Table 4.5 below. 

- 

Table 4 . 5  

We integrated the system (3.13), (3.14) using the adjusted values of 

and E given in the table (and cD = mH = cH = kH = 0) and obtained mT 
the plot shown in Figure 4.6. The corresponding residuals are 

plotted in Figure 4.7. The sum of the squares of the residuals was I 
; computed to be 5.1. 

Starting with the same basic model, we used our scheme to 

determine the values of mT and E which minimize the sum of the squares 

of the residuals over the time interval [3.0, 5.01 with a sampling 

i 
1 

period of .1 seconds. 

and E (mT = .149 slug, E = 15.84 x 10 lb/(ft)2) as start up values 

Taking the theoretically predicted values of mT 
8 

1 for the optimization routine yielded the results given in Table 4.6. 

I 
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The corresponding fit and residuals are plotted in Figures 4.8 and 4.9 

respectively below. The sum of the squares of the residuals (over the 

interval [0,51) was computed to be .73. 

E (lb/(ft)2) 

.185 

Table 4.6 

x Data 

0 F i t  
X X  

X 

X 
X 

I I I I 
CO .3G 2.OG 3 . o o  4 . 0 0  

Time (Seconds) 

I 

Figure 4.6 
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Figure 4 .9  

In summary, we have seen that analysis of the RPL experimental 

data can be carried out in several ways with a number of different 

models. Our techniques can be used to provide reasonable fits of the 

data to models with or without hose and/or beam damping. Even if one 

attempts to leave the physics of the hose - beam dynamic interaction 

unmodeled and perform "model adjustment" (by adjusting the values of 

the tip mass mT and beam modulus of elasticity E), our estimation 

techniques provide a much better fit than that obtained using "modal 

matching" methods common in engineering practice. 

One of the primary objectives of our effort here was t o  

demonstrate the efficacy of our scheme and in particular, to assess 

its effectiveness when provided with actual experimental data. 

we are pleased with the results obtained for the RPL data, we are 

careful to point out that to provide a fair and complete evaluation of 

While 
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the usefulness of our models for the RPL experimental structure, a 

more complete and in-depth study involving extensive experimental work 

and statistical analysis would necessarily be required. 

Acknowl-ent The authors would like to thank D r .  Michel A .  Floyd 

of Integrated Systems Inc. in Palo Alto, California for his willing- 

ness to discuss the technical details of the RPL structure and for 

providing us with the experimental data upon which this research was 

based. 



40 

H. T. Banks and J. M. Crowley, Parameter identification in 
continuum models, J . Astronautical Sciences , ZB (1985), 
pp. 85-94. 

H. T. Banks, J.M. Crowley amd I. G. Rosen, Methods for the 
identification of material parameters in distributed models 
for flexible structures, ICASE Report No. 84-66, Institute 
for Computer Applications in Science and Engineering, NASA 
Langley Research Center, Hampton, VA, 1984, Mat. Aplicada e 
Comnut aci on&L , to appear. 

H. T. Banks and I. G. Rosen, A Galerkin method for the 
estimation of parameters in hybrid systems governing the 
vibration of flexible beams with tip bodies, ICASE Report 
No. 85-7, Institute for Computer Applications in Science and 
Engineering, NASA Langley Research Center, Hampton, VA, 1985. 

H. T. Banks and I. G. Rosen, Computational methods for the 
identification of spatially varying stiffness and damping in 
beams, ICASE Report No. 86-70, Institute for Computer 
Applications in Science and Engineering, NASA Langley 
Research Center, Hampton, VA, 1986. 

R. W. Clough and J. Penzien, Pyn;Lmics of Structura, 
McGraw-Hill, New York, 1975. 

M. A. Floyd, Single-step optimal control of Large Space 
Structures, Ph.D. Thesis, Department of Aeronautics and 
Astronautics, Massachusetts Institute of Technology, 
Cambridge, MA, 1984 and Report CSDL-T-840,The Charles Stark 
Draper Laboratory, Cambridge, MA, 1984. 

A. Friedman, Partial Differen t j& Ecruations of Parabolic m, Prentice Hall, Englewood Cliffs, New Jersey, 1964. 
K. Kunisch and E. Graif, Parameter estimation for the Euler- 
Bernoulli beam, Mat. AaUcada e ComnutactoU , 4,  (1985), 
pp.95-124. 

J. L. Lions, Optimal Control of Svstems Governed by Partial 
Dlfferential, Springer-Verlag, New York, 1971. 

P. P. Popov, Introduction to Me&&cs of Solids, 
Prentice-Hall, Englewood Cliffs, New Jersey, 1968. 

P. M. Prenter, Splines and Variational Methods , Wiley- 
Interscience, New York, 1975. 



121 

[ 13 1 

C141 

[l51 

41 

I. G. Rosen, A numerical scheme for the identification of 
hybrid systems describing the vibration of flexible beams 
with tip bodies, J. Math. Anal. Appl., JJB, (19861, 

M. €I. Schultz, A r L L y s L S ,  Prentice Hall, Englewood 
Cliffs, New Jersey, 1973. 

R. E. Showalter, Ulbert Space Methods for Par- 
Pifferenti&-&Ecruations, Pitman, London, 1977. 

R. Strunce, et. al., Verification of RCS Controller Methods 
for Flexible Spacecraft (RPL-EXP), Report CSDL-P-1653, The 
Charles Stark Draper Laboratory, Cambridge, MA, 1982. 

pp.262-288. 



1. Report No. NASA 5-178199 
ICASE Report No. 86-71 

r. Author(s) 

H. T. Banks, S .  S .  Gates, I. G. Rosen, Y. Wang 

YnsTifEutg For tomputer dppIications in Science 

Mail Stop 132C, NASA Langley Research Center 
HamDton. VA 23665-5225 

~ c _ _  

j. P for Or an' atio Name nd A dres 

and Engineering 

2. Government Accession NO. 

12. Sponsoring Agency Name and Address 

19. Security Classif. of this report) 
Unclassif ie$ 

National Aeronautics and Space Administration 
Washington, D.C. 20546 

20. Security Classif.(of this page) 21. No. of Pages 22. Price 
Unclassified 43 A0 3 

15. Supplementary Notes 

Langley Technical Monitor: 
J. C. South 

Final Report 

3. Recipient's Catalog No. 

5. Report Date 

October 1986 
6. Performing Organization Code 

8. Performing Organization Report No. 

86-7 1 
10. Work Unit No. 

11. Contract or Grant No. 
NAS1-17070, NAS1-18107 

13. Type of Report and Period Covered 

Contractor Report 
14. Sponsoring Agency Code 

- - -  

Submitted to SIAM J. Control 
and Opt. 

16. Abstract 

We develop a computational method for the estimation of parameters in a 
distributed model for a flexible structure. The structure we consider (part of 
the "RPL experiment") consists of a cantilevered beam with a thruster and linear 
accelerometer at the free end. The thruster is fed by a pressurized hose whose 
horizontal motion effects the transverse vibration of the beam. We use the 
Euler-Bernoulli theory to model the vibration of the beam and treat the hose- 
thruster assembly as a lumped or point mass-dashpot-spring system at the tip. 
Using measurements of linear acceleration at the tip, we estimate the hose 
parameters (mass, stiffness, damping) and a Voigt-Kelvin viscoelastic structural 
damping parameter for the beam using a least squares fit to the data. 

We consider spline based approximations to the hybrid (coupled ordinary and 
partial differential equations) system; theoretical convergence results and 
numerical studies with both simulation and actual experimental data obtained 
from the structure are presented and discussed. 

17. Key Words (Suggested by Authors(s)) 

parameter estimation, computational 
methods, damped beams, spline 
approximations 

18. Distribution Statement 

64 - Numerical Analysis 
66 - Systems Analysis 

Unclassified - unlimited 

For sale by the National Technical Information Service, Springfield, Virginia 22161 
NASA-Langley, 1986 


